Improvement of Fracture Toughness in Epoxy Nanocomposites through Chemical Hybridization of Carbon Nanotubes and Alumina
نویسندگان
چکیده
The current study investigated the effect of adding a carbon nanotube-alumina (CNT-Al₂O₃) hybrid on the fracture toughness of epoxy nanocomposites. The CNT-Al₂O₃ hybrid was synthesised by growing CNTs on Al₂O₃ particles via the chemical vapour deposition method. The CNTs were strongly attached onto the Al₂O₃ particles, which served to transport and disperse the CNTs homogenously, and to prevent agglomeration in the CNTs. The experimental results demonstrated that the CNT-Al₂O₃ hybrid-filled epoxy nanocomposites showed improvement in terms of the fracture toughness, as indicated by an increase of up to 26% in the critical stress intensity factor, K1C, compared to neat epoxy.
منابع مشابه
Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering
Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering. Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNT) begin to break down at sintering temperatures >1150 C. Nuclear magnetic resonance showed that, although thermodynamically unlikely, no Al4C3 ...
متن کاملEnhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers
In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the ten...
متن کاملEnhanced mechanical properties of nanocomposites at low graphene content.
In this study, the mechanical properties of epoxy nanocomposites with graphene platelets, single-walled carbon nanotubes, and multi-walled carbon nanotube additives were compared at a nanofiller weight fraction of 0.1 +/- 0.002%. The mechanical properties measured were the Young's modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material's resistance to fatigue c...
متن کاملFracture behavior of epoxy nanocomposites modified with polyol diluent and amino-functionalized multi-walled carbon nanotubes: A loading rate study
The synergistic effects of reactive polyol diluent and amino-functionalized multi-walled carbon nano-tubes on fracture of two-and three-phase (hybrid) epoxy nanocomposites are investigated under quasi-static and dynamic loading conditions. Digital image correlation method with a drop-tower and high-speed camera are used for dynamic tests. The crack-tip deformation histories and fracture paramet...
متن کاملImproved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs
This investigation examines the role of carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNTs) in the on- and off-axis flexure and the shear responses of thin carbon woven fabric composite plates. The chemically functionalized COOH-MWCNTs were used to fabricate epoxy nanocomposites and, subsequently, carbon woven fabric plates to be tested on flexure and shear. In addition to the n...
متن کامل